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Abstract -W

This note considers the response of a hollow spherical dipole
in non-conducting media. This sensor is a sphere with a slot
around the equator which is uniformly resistively loaded. The
current through the resistive load across the slot is proportional
to the time rate of change of the displacement vector for low fre-
quencies. The response characteristics of such a device at high
frequencies are calculated using expansions in spherical wave
functions. These calculations include the dependence of the sensor
response on both frequency and the direction of wave incidence.

Foreword

The calculations in this note have a form similar to those
in a few previous notes on cylindrical loops. This note extends
these types of calculations to spherical geometries where the
sensor in this case measures the displacement current density.
For convenience the figures are grouped together after the sum-
mary and before the appendices. Appendix C was written by Mr.
Joe P. Martinez of Dikewood and we would like to thank him and
Mr. Larry Berg of AFWL for the numerical calculations and graphs.
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I. Introduction

Among the problems of electromagnetic sensor design for use
in non-conducting media there are the general problems of sensor
accuracy, directional sensitivity at high frequencies, and maxi-
mizing the upper frequency response for a given sensitivity. Here
we are concerned with sensors for measuring some electromagnetic
field component, or its derivative, with a flat frequency response
over the bandwidth of interest so that in measuring pulsed fields
there is no distortion of the waveform, within limits like the
risetime. As an example, a multi-gap cylindrical loop h s a well
calculable equivalent area for measuring a component of B, and by
increasing the number of gaps the upper frequency response can be
raised and the directional sensitivity at high frequencies is re-
duced (for waves still propagating perpendicular to the loop
axis).±

In this note we consider another kind of sensor which we
term a hollow spherical dipole. Since this sensor is based on a
sphere we can analyze its performance using vector eigenfunction
expansions in spherical coordinates. (This in itself is a good
reason for considering a spherical sensor.) The analysis will
follow an approach similar to that used in two previous notes
concerning cylindrical loops where cylindrical vector eigenfunc-
tions were used. 1 ,2

The basic sensor geometry is shown in figure 1. It consists
of a hollow sphere of radius a with a gap of angular width 24o
symmetrically cut around the equator of the sphere. The sensor
is described in spherical coordinates (r, 0, ý) as a conducting
surface on r = a for 0 < 6 < 60 and f - 00 < 0 < f. The gap is
described by r = a and eo < 0 < n - 0 where 0 < O0 < n/2. We
have the relation

7= -
(1)

There is also the cylindrical coordinate system (T, 0, z)
and the sensor geometry is constrained to have axial symmetry
(about the z axis) so that its response is independent of *. The
gap is assumed to have resistive loading uniform in 0 to preserve

1. Capt Carl E. Baum, Sensor and Simulation Note 41, The Multi-
Gap Cylindrical Loop in Non-Conducting Media, May 1967.

2. Capt Carl E. Baum, Sensor and Simulation Note 30, The Single-
Gap Cylindrical Loop in Non-Conducting and Conducting Media,
January 1967.



axial symmetry. This resistive loading might in practice be
many cable inputs evenly spaced around the gap; the cables would
bring the total current crossing the gap with equal delays to one
common point where the signal is desired. Such cable networks
are not considered in this note, but they are assumed to be lo-
cated in positions which do not significantly perturb the sensor
geometry.

The basic mode of operation of this type of sensor uses the
short circuit current across the loop gap. As will appear in the
analysis, for wavelengths much larger than a the short circuit
current is just 31Ta 2 times the z component of the total cuirent
density. If the medium conductivity is zero then the total cur-
rent density is just the displacement current density. (There
are no source currents in these calculations.) Thi-s one might
refer to this sensor as a 6 sensor or a total current density
sensor, depending on the specific application. 3 The sensor has
an equivalent area of 3ra 2 which is quite accurate as long as 1o

is small. The actual accuracy of this number for the equivalent
area is not considered in this note. The simplifying assumptions
allowing the present high-frequency analysis give 37a 2 as the
equivalent area.

In outline this note first considers the expansion of an in-
cident electromagnetic plane wave in terms of spherical vector
eigenfunctions. Then this plane wave is imposed on the sphere
with a shorted gap in order to calculate the short circuit cur-
rent as a function of frequency and the angle of wave incidence.
Then assuming small ýo and a quasi static electric field distri-
bution across the gap we calculate the sensor admittances associ-
ated with both the volume inside and outside the sensor. Combin-
ing the admittances due to the sensor geometry and the assumed
cable loading with the short circuit current then gives the sensor
response functions for an incident plane wave. From these results
things like optimum cable loading can be calculated. For this
sensor with the case of interest that the medium conductivity is
zero the admittance due to the cable loading is lar-c compared to
the sensor admittance (basically a capacitance) foL frequencies
below the upper frequency response of the sensor. The sensor re-
sponse is then normalized by dividing the current output by 37ra 2

times 6, the ideal low-frequency response.

3. Capt Carl E. Baum, Sensor and Simulation Note 38, Parameters
for Some Electrically-Small Electromagnetic Sensors, March 1967.
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II. Electromagnetic Fields in Spherical Coordinates

Consider that we have a linear, homogeneous, isotropic medium
with permittivity c, permeability vi, and conductivity a. We have
propagation constantsO

k = /-iwp (a + i-w)
(2)

Y = /sj (a + sE)

and a wave impedance

Zs = Vasi iWP
a + se Va + iwe (3)

where s is the Laplace transform variable which we take as iw for
the frequency-domain analysis in this note. The radian frequency
is w and i is the unit imaginary. Our interest lies for the most
part in a = 0, as is used for the numerical calculations. How-
ever we keep a in the analysis for generality.

With time harmonic fields and with eiwt suppressed Maxwell's
equations have the form

V x P = iA V X H I + iW5

(4)
V " =0 , V '-D =P

together with the constitutive relations and Ohm's law

ý = P 1 5 = ý , ý = A• (5)

From equations 4 and 5 one obtains vector wave equations of the
form

VE + k2 = ,H + k2 H (6)

Note that there are assumed to be no source currents or charges
(p = 0) in the medium, but ther! will be charges (and currents)
on the spherical sensor. Thus E (as well as H) has zero divergence
away from boundaries allowing the result in equations 6.

4. All units are rationalized MKSA.



In spherical coordinates the solution of the scalar wave
equation can be written as a linear combination of functions of
the form5

= (n, m, e) E() (kr)Pm(cos(6)) cos(mp) (7)
0 n n Isin(mý)I

where fA") (kr) is one of the spherical Bessel functions jn(kr),
Yn(kr), hn-l)(kr), hj 2 )(kr) for £ = 1, 2, 3, 4 in that order.
The third argument o is listed as e or o (meaning even or odd);
e corresponds to using cos(mp) and o to using sin(mo). Unless
noted to the contrary the definitions of the special functions
correspond to those in a standard reference work. 6 In particular
the Legendre functions of the first kind PM(U) of degree n and
order m on the cut (-4 < • < 1) in the complex ý plane have the
form (ref. 6 eqn. 8.6.6Y -

m
2 dmpm n (-l)m(l - 2 dc p () (8)

where

Pn P pO •) _ 1 dn 2 _ n) (9)
2 n. dEn

where we only consider n and m as non negative integers and C as
a real argument with -1 < ý < 1. Our definition differs from
that in some texts on electromagnetic theory 5 ,7, 8 in which the
factor of (-l)m is not included. The form of equation 8 is how-
ever consistent with various texts dealing with the special

5. J. A. Stratton, Electromagnetic Theory, McGraw Hill, 1941,
section 7.3.

6. Abramowitz and Stegun, ed., Handbook of Mathematical Func-
tions, AMS 55, National Bureau of Standards, 1964.

7. W. R. Smythe, Static and Dynamic Electricity, 2nd. ed.,
McGraw Hill, 1950.

8. Morse and Feshbach, Methods of Theoretical Physics, McGra•
Hill, 1953.



functions of mathematical physics. 6 ,9' 1 0 For • as a general com-
plex number not on the cut (-1 < C < 1) the definition differs
somewhat. The form in equation 8 agrees with more general defi-
nitions for real m not necessarily an integer. In any case we
only use -1 < ý < 1 in this note.

Similar to Stratton (ref. 5, section 7.11) define two inde-
pendent sets of vector wave functions which can be used to con-
struct any divergenceless vector field satisfying the vector wave
equation (as in equations 6). The first set of vector wave func-
tions is defined by

Mm, e) V x r5(£)(n, m, e (10)

where er is the unit vector in the r direction, and similarly for
other unit vectors. These vector wave functions have components
as

M M£ (n, m, e 0r m,°) = 0
r 0

M M (n, m, e) i(n, m0, e
0 snn m,) 011

M M (n, m, e)= d (1 m, e)

e) 0(n,-

where the last two components can be expanded as

pm(cos(e)) I-sin(mO)1
S o n sin(O) mcos(m)

(12)

m, e) = _f((kr) dpm(cos(0)) cos(mf)M (9) (n, m, e nf d8r nsn~#

00 ndO 1sin(m~)

9. Magnus, Oberhettinger, and Soni, Formulas and Theorems for
the Special Functions of Mathematical Physics, 3rd ed., Springer-
Verlag New York, 1966.

10. E. W. Hobson, The Theory of Spherical and Ellipsoidal Har-
monics, Chelsea, New York, 1955.



The second set of vector wave functions is defined by

-Me 1e), C(3

N (n, m, V x M (n, m,

which has components

Nr(£)(n, m, e) _ n(n + 1) =(Z) (n, m, e
r o 1 2r o

N £ (n, m, a(kr) 2 kr ()(n, m, e (14)

Se 1 a_2 [km e)]

N £) (n, m, o = 0 kr sin(8) 3(kr)4 r( (n, m,

which can be expanded as

f(Z) (kr) cos(mO))
(£)(n, m, e n(n + 1) n p m(cos(0))r 0 kr n sin(mP)

C krf (r)kr dPmn(cos(e)) cos(mf)
N)(n, m, e)r = ni (15)

0ok de lsin(mfl)

[krfn()(kr)' Pnm(cos(e)) I-sin(mp)

N £(n, m, e)r sin(0) jmcos(me)

where a prime is used to indicate differentiation with respect to
the argument of the spherical Bessel function being considered.
Similar to equation 13 we also have the relation

M() (n, m e) m,£ e)
(n, = V x ()(n m, ) (16)

The N and M functions are mutually orthogonal on a sphere (of con-
stant kr). Also gn the unit sphere we have the orthogonality re-
lations that two N functions with different n or m are orthogonal,
or if one is even and the other odd they azre x" -I

7



same results hold for the M functions. For all indices the same
we have

o f (n, e) • (n, m, C) sin(e)dedý

f J0

2

[i +' 1mo27T n(n + 1) (n + m)! [f(M(kr)]2 (17)
M n 2n + 1 (n n

and

2 (n, m, n, ) sin()dd
0 0

=[i 1mo2n n(n +) (n + m)!
(2n + 1) (n - m)!

(n + 1)Lf n)(kr)2 + n[ fn+(kr) 1  (18)

where 6ml,m2 is the Kronecker delta function defined by

form1 = m2

6 (19)
mlm 2  0 for mI m 2

With the N and M vector wave functions we can now expand an
electric field with zero divergence as

n (£) (n m, e e( n m (0

E = Eo÷ E n,mM o) + n,m (20)
n=o m=o

where Eo is some constant with dimensions volts/meter and where

an,m and an,m are dimensionless constants. Note that we can also

sum over Z and over even and odd functions but typically for some

particular form of wave only one 9 will be needed and with appro-

priate symmetry only one of e and o will be needed for each type

of vector wave function. Comparing equations 4 and 5 with the



relations between the M and N~functions (equations 13 and 16)
note that we can find H from E by replacing

e) i - ()90 e

M (n, m, N (n, m,

(21)

Me) i +(2,M eN( (n, m, 0) M (n, m, 0)

giving an H to go with equation 20 as

E o n e •'Y 'tM N'' (mn,) m,
H E n,m N)(n, m, 0) + ýn,m °), (22)

n=o M=o

Similarly if we are given an expansion for H we can find E by
substituting

-. Me -M-s eM (n, m, -iZN (n, m,

(23)
e e£

g(£)(n, m, e) +-iZM (n, m, e

With the N and M functions we can expand any electromagnetic
field distribution as long as the fields have no divergence which
requires p = 0 in £quations 4. For completeness note that the
wave equation for E found from equations 4 and 5 is

-V x (V x .) + k2. = 0 (24)

which reduces to

S- _V(V + 2- 0 (25)

As discussed by Stratton another set of wave functions are needed
which we define as

e) 1 V(£) en

L (n, m, ) k (n, m, )(2( )

which has components

9



M e M Cos (mý)
L r (n, M, 0 f n (kr)P n (COS(e)) lsin(mfll

f (YI) (kr) dPm (cos (e) ) Cos (mý)
LM(n, M, e) = n n (27)0 kr de Isin(WI

f M(kr) 
Pm(cos(O)) 

-si-(mflI
L(Y,)(n, M, e) = - n -R-r n sin(O) ml

The t and A vector functions are related as

M e eL ) x e (28)M (n, M, 0 kr'(Pl)(n,, m, 0 r

The L and M functions are mjýtually orthogonal on a sphere (of
constant kr). However the L and N functions are only orth9gonal

e) differs. The L func-if at least one of the indices (Z, n, m, 0
tions are orthogonal to each other unless the indices are all the
same, in which case we have

2 Tr 7T (9.)
f f L (n, M, 0) L (n, m, 0 )sin(O)dedý

0 0

2 7T (n + m) ]2

M'o TH T-T Tn-----mT-T if n

+ n(n + 1) M(kr) ]21 (29)
(kr) 2 Ifn

For another reference concerning these spherical vector wave
functions see Morse and Feshback.11 The definitions used here

iWt , -are similar to Morse and Feshback except that we use e ..'iereas
Stratton and 'lorse and Feshback both use e-iwt for the harmonic
time dependence.

!I. Ref. 8, Part II, op. 1864-1866.



III. Vector Plane Waves in Spherical Coordinates

Now consider vector plane waves in spherical coordinates.
Such a wave has the general form

F u 0Ue (30)

where u is some unit vector with fixed direction and where the
propagation vector is given by

k E ke1  (31)

where eI is the direction of propagation of ýhe wave. Figure 2A
§hows a general plne 4 . wave aj some position r propagating in the
el direction with E, H, and k all mutually orthogonal vectors.
We assume that E has a fixed polarization (and thus H also has a
fixed polarization) for purposes of illustration. This plane
wave also has

-~ 4. 4
E = ZH x eI (32)

so that the wave is propagating in the +el direction.

el is a fixed direction)in space determining the direction
of wave propagation. ý and H are parallel to a plane which is in
turn perpendicular to el. Construct two orthogonal unit vectors,
e 2 and4 . e 3 , parallel to this plane as shown in figure 2B. Now
since eI is a fixed direction in space it can be described by
fixed angles 01 and 4i in a spherical4 . coo~dinate system with re-
spect to the cartesian unit vectors (ex, ey, ez) which are also
fixed directions in space. As shown in figure 2ý choose e2 to be
parallel tR the same plane to which both el and ez+are parallel;
also make e2 perpendicular to el. Finally choose e3 perpendicular
to both eI and e2, thereby making it parallel to the x, y plane.

These new unit vectors are made to form a right handed system
so that we have

4A.

eI 1x e 2 = e 3 e e2 x e3 = el e e3 x eI1 = e 2 (33)

Noti that e 2 is chosen such that for 0 < 01 < n/2 the polar angle
of e2 is 7/2 - 01. In terms of the cartesian unit vectors we have

Ii



eI = sin(e1)cos(l)e x + sin(O1)sin(ý 1 )eey + cos(ez)e

4. 4
e -cos( 1 ) cos 1 ) ex cos(O1 )sin(l )e y+ sin(61 ) ez (34)

e 3 = sin(U1 )ex - cos(Yl)ey

Cartesian and spherical coordinates are related as

x = r sin(O)cos(f)

,y = r sin(e)sin(•) (35)

z = r cos(e)

The cartesian and spherical unit vectors are related as

4V.
e = sin(0)cos()e) + cos(0)cos(ý)_ 0 - sin (feex r

4. 4ey = sin(O)sin(4)er + cos(O)sin(f)e + cos(f)e (36)

ez r

ez= cos(O)er. - sin (8) e)'

or

er sin(e)cos(ý)e + sin(O)sin(ý)e + cos(6)erx y z

e0 = cos(flcos(fle x+ cos(O)sin (4) - sin(e)ez (37)e0 cs8cs•÷x y

= -sin(0)ex + cos(4)ey

Substitute for the cartesian unit vectors in equations .34 from
equations 36 and use some trigonometric identities to give

12



+

eI = [cos(e 1 )cos(O) + sin(01)sin(O)cos(ý - ý!)]er

+ [-cos(el)sin(0) + sin(01)cos(G)cos(4 - 0l)]e 6

- sin(O1 )sin(ý - ýl)e

e2 = [sin(0 1 )cos(0) - cos(O1 )sin(O)cos( -l)]er

- [sin(e 1l)sin(0) + cos(0 1 )cos(O)cos(4 - #l)]e (38)

+ cos(0 1 )sin(ý - l)e

e= -sin(e)sin(½ - 1l)er

-cos(O)sin(ý - @l)e,

-cos( - )e

Note that ý and i appear in the combination c - ci in this
formulation.

The general unit vector u (with constant direction) used in
equation 30 can be considered a_ a linear combination of the sys-

tem of orthogonal unit vectors el, e2, e3. Now eI gives the di-
rection of propagation of the vector plane wave. For our purposes
we have an electromagnetic wave which is an assumed TEM plane
wave. This plane wave will be used as the incident wave f~r cal-
culating the sensor resRonse. Calling the~electric field Einc
and the magnetic field Hinc then Einc and Hinc must both be per-
penlicularto el; they can then be formed from linear combinations
of el and e 2 . In figure 3 we.i~llstrate such a plane wave inci-
dent on a sphere centered on r = 0. The slot around the sphere
is to be centered on e = n/2 so as to make the spnsor symmetric
wit4 respect to the x, y plane. By symmetry if Einc were parallel
to e2 and thus parallel to the x, y plane it would drive no net
current across the gap; note we are going to integrate the cur-
rent all around the gap to obtain the short-circuit current for
the sensor. Thus we are only interested in the polarization of

13



the incident wave for which Einc is parallel to e2 and our inci-
dent wave is defined by

inc oe2

(39)

4. BO-ee '
inc Z 3

Since one can convert an electric field distribution to the asso-
ciated magnetic fielg by the transformatigns in_..equations 214-we
only need to expand Einc in terms of the M an4 N functions; Hinc
is directly obtainable from the expansion of Einc.

As a further simplification we will later set ci = 0 to make
Sparallel to the x, z plane as shown in figure 3. Since the
sensor geometry is independent of p this represents no loss in
generality. Consider an rl, el, *l spherical coordinate system
where e1 and 01 are the angles fixing the direction of propaga-
tion of the incident plane wave as above. The unit vectors for
such a coordinate system are

4 - _e 4-1 =- -0.4.
erI = eli e 0 E- - -e3 (40)

As in Morse and Feshback 1 2 we define vector spherical harmonics
using the spherical angles 81, ýl as

4. e pmos(1))Icos(ml)IJ

P(n, m, o) er P n cos(e

me /n(n+l) f1[n-m+l pm (cos(81))o (2n+l)sin(81 ) L n+- n+l

n+m Pm (cos( cs (m4l)l
- n-l( 1 sin(mol)l

4. m(2n+l) pm (c (O i -sin 1
+ eel n(n+l) n 1 cos(mp1 )

12. Ref. 8, Part II, pp. 1898, 1899.



SI (2n+l) f-sin (m4l)Je) n n+l e1 (0~lC(n, m, o) (2n+l)sin ( 1 ) 1e0  n(n+l) n cos(m4l)

- [nern-m+l Pm n(cos(O 1 ))

(41)

n+m pm (cos(1 Icos(mýl)I
n n-I lsin(mý 1 )

The letters e and o refer to even and odd functions and are asso-
ciated with the upper and lower functions in braces just as with
the vector wave functions previously introduced.

Now we introduce the result of Morse and Feshback 1 3 for a
dyadic plane wave with i switched to -i giving

(6a6)e = -r

O n _ (n-m) e e= E L [2-6m,o (-i)(2n+l) _(n+m' o) (nm,0 )
n=o m=o e,o

+ 1 (n,m,o) o) + iB(n,m,o)N (nm, 04
+n (n___l) L'"3 j()(•e)+e~ ) 1  (2

The P, B, Q vct~r spherical harmonics are functions of 01 and ýi
while theL, M, N spherical vector wave functions are functions
of r, 0, and ý. Note the use of dyadic notation where two vectors
are written side by side to form a dyadic. (6 a,$) is the identity
dyadic which is also written in matrix form in equation 42. A
vector plane wave is formed by taking the dot product of some con-
stant vector on the left of the terms in equation 42. Using a
general unit vector u with fixed direction (as in equation 30) we
have a vector plane wave as

13. Ref. 8, Part II, p. 1866.

15



ue =u • (6 ,d)e

00 n
n n(n-mr) e e= [2-•5 �[2-6m ] (-i)(2n+l) n i[u'P(nm,')J (n'm'o)

m,0o i Tn+m)r o nm
n=o m=o e,o I

+) 4.[ e () e e e)]I
nnl E[u'C(n'm')]M (n'me) + i[•'B(nm')]N(1)(nme°

Vn(n+l) L 0 o o 0.J

(43)

The problem of expanding a vector plane wave then reduces to
finding the coefficients expressed above as dot products.

Our-plane wave-of interest (equations 39) can be found by
setting u !qual t9 e2 and then equal to e3 while using the rela-
tions for e2 and e 3 .given in equations 40 and setting *l = 0.
Considering first e2 we have

_I 4.e4 e
me) = -i • P(n, m, 02 o 1 o

1 ~e -i ~

e ." (n, m, e) - el •(n, m,
/n (n+l) 2 0 /n(n+l) 1

1 m P (cose(811) (44)
sin(e 1) n(n+l) n cosl 1

i (n, m, e = -i 1 e
____e 2 (n m0) ___ e 0  B(n, m, 0

Vn (n+l) 1T /n (n+l) 1T

-i 1 [n-m+l Pm (cm s( ) n+m Pm (c (1]
sin(8 1) 2n+l L n+1 ~n+l co~ 1)) 1 n csl 1 10

Thus only the second set of coefficients for odd harmonics and
the third set for even harmonics can bj non jero. Note that n = 0
is not used because the corresponding M and N functions are iden-
tically zero. The last of equations 44 can be rewritten using
identities for the Legendre functions 1 4 as

14. Ref. 5, p. 402.
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_____ m. e) -i dr(Cos (0))(5
e2 o n ,0 n (n+1) de 1451

The incident electric field from equations 39 can then be written
as

~inc E Eoe 2 eik

(46)

e. e = N n,m,e)]
2 E _ a ~ n,m

n-l m-o

where

a =[2-6 ](_i) n+2 2n+l (n-m)! n 6)
n,,m rn,o ntn+l) ( n-+m)' sin( 1)

(47)

b [-6 ] .)+1 2n+1 (n-rn) P m(cos(e1 ))
bn,m [26M,o _ n (n+1)7 -(n+m) n de1

Setting u = e3 we have another set of coefficients as

m+)_i -). e

*ýnm' =(~me =- -i * ýnm,)

V/n(n+l) 30 Vn--(n+l) ýl 0

1 -1~j fii-Tm+l m isOn-n Pm (cos(6)l'

1 ~ 1cs( 1nmlP csO) ~ -

n- n+ 1 T dP~ c sO 1 10
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o) e•

i 3 . e _ -i + ( 4(n,m,o)

/nn sln(8e ) B(nl) P 1
1(cns81) (48

-i m m

The incident magnetic field from equations 39 can then be written
as

Eo

inc Z 3

(49)+ -ik .j• = r. [inm()(1) 1nme
e 3 e Lianm (n,m,o) + ibn,mM (nme

n=l m=o

We then have the complete expansion of our incident wave.

Actually, with e 2 e-ikr and e 3e-lk'r expanded any polariza-
tion of the incident electric field (perpendicular to k) can be
written as a linear combination of these two plane waves. The
associated incident magnetic field can be similarly written. Be-
ginning with equations 44 we restricted 01 = 0. However, if it
is desired to have l ý 0 there are at least two approaches to
generalize the present results. First, one can simply leave
ýi y 0 in calculating the coefficients as in equations 44 and 48;
this will put terms like cos(m•I) and sin(moI) in the coeffici-
ents. Or second, one can take advantage of the axial symmetry of
the spherical coordinate system and consider * - ýi as the azi-
muthal angle in the present result4; in this case one just substi-
tutes 0 - 01 in place of ý in the M and N functions in equations
46 and 49. Which of these methods if used is a matter of conven-
ience related to the problem at hand. As stated before we assume
the spherical sensor in the present problem to have axial symmetry
so that we use #i = 0 for convenience.

The expansion of ele-ik'r would be another extension of the
present results for cases where there were source currents in the
incident wave such that the incident electric field had a non
zero divergence. _This, of course, would be accomplished by sub-
stituting el for u and obtaining a set of coefficients analogous
to equations 44 or 48.
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IV. Short Circuit Current

Having the incident plane wave, next consider the short cir-
cuit current from the sensor. For this calculation short circuit
the gap in the sphere so that it looks like a complete perfectly
conducting sphere with no gap. Then we consider the currents in-
duced on the sphere by the incident plane wave. The incident plane
wave is given by equations 46 and 49 in the previous section.
Add to this a scattered wave of the form

CO n
E = E [cnmM(4) (nmo) + d N'N (nm'e)
sc o Cmn,m

(50)

E r n
Hsc - Z°L • Cn,mN'4 (n,m,o) + id n,m (4(n,,m,e)

n=l m=o

The fourth kind of spherical bpssel 4unctions are used to give an
outward propagating wave; the M and N functions are chosen even
or odd to match the 0 dependence of those appearing in the expan-
sion for the incident wave.

The boundary condition at r = a is that Ea =E = 0. From
the spherical vector wave functions in equations 12 and 15 this
requires

a (ka) + c h(2) (ka) - 0

n,m n n,m n

(51)
[kaj (ka)]' kah(2) (ka)

b n + d n ( 0

n,m ka n,m ka

giving

jn (ka)c - a
Cnm h(2) (ka) n,m

n

(52)

[kajn (ka)]'

nm kah (2 ) (ka) n,m

Note that the total field is
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4 4.4 . 4 . . i

E = Einc + Esc H = Hinc + Hsc (53)

The surface current density Js on the perfectly conducting
spherical surface on r = a has e and 4 components which can be
found from the magnetic field just outside the surface as

J =H
Js8 = Hr=a+

E{co n ikaJn(ka)]I Jn(ka) [kah 2) (ka) '

Z m [-in,m ka h(2) (ka) ka
I I n

pm(cos(e))n sin(e) .m cos(mý)

[kaj (ka)]' dPpm (cos(e)) )1
+ ibn'm Jn(ka) - n I h 2)(ka) dn cos(MO

[~ nkah (2) (ka)] nmcdO
(54)

HJs@ = lr=a+

- nl [[kajn(ka)]' Jn(ka) kah(2) (ka)
E l m ian,m ka h(2) (ka) ka

n n

dP m (cosM())
n d6 sin (mf)

[ka (k ' p m (Cos (()))

- ibn'm Jn(ka) n hn2) (ka) n "si()m sin(mO)
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To simplify this we use a Wronskian relation15 to obtain

h( 2 ) (ka)[kaJ (ka)]' - jn(ka)[kahn(2) (ka)]

- 'Ikay (ka)[ka (ka)]' - kaJn (ka) [kayn(ka)] '-ikan (ka nkaI

Sik (55)

Using this result in equations 54 gives

1_o £1 pmn(cos(e))n•

zn=l lm-o (ka) 2 (2 (ka) sine)
n

dPnm (cos())
+ b 1 n cos(m)

nm kafkah 2 ) (ka)] dj

(56)

__2E dPm(cos(O))
Jsa n - sin(mf)nm=o nm ,2(ka) dn

1 n
- b _ ____ _____ ____ (cos(O))

nm ka[kah 2 ) (ka) sin(e) m sin(mn)

With surface current density on the sphere determined we can
calculate the total current crossing a circle of constant 0 on
the spherical surface; this is

15. Ref. 6, eqn. 10.3.4.
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27 r -m ,.... ..

2 Tr

I(M) a c-in(6) f Jsedý

=E 1 dP°(cbs(O))
zn=l ka~kahn(2) (kaT)' (7n (57)

where

b = (_i)n+l 2n + 1 dpn (cs(1)) (58)
non(n + iT' dO1

Rewriting the Legendre functions with the relation

dP~n(cos(0)) _ pl(cos(e)) (59)
dO n

we then have

IMe = 27ra sin(e) OEZ (-i) n+ 2n+1 1
Sn(n+l) ka kah 2 ) (ka)]

•pl(cos (1))pl(cos((e)) 60)
n n

For small Ikal we have for the spherical Hankel functions

h(2) (ka) = i(2n - i)''(ka)-n-I O((ka)n-n (61)
n

The double factorial function is defined by

(2n)!! =- (2n)(2n - 2) ... (4)(2) (even)

(62)

(2n - 1)!! - (2n - 1)(2n - 3) ... (3)(1) (odd)

with the conventions
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0!= 1 , (-) 1 (63)

For small Ikal the n = 1 term in equation 60 dominates and we
have as ka ÷ 0

I(M) = 3i a 0 (-ika) sin(01 ) [sin(O)l2 + O (ka)2

= -3Tra 2 E0 (a + iwe) sin(O91)[sin(e)]2 + O((ka)2) (64)

Thus for low frequencies the short circuit current is proportional
to (a + iwc)Eo sin(OI) which is the z component of tle total cur-
rent density. For the case that a = 0 then the response is pro-
portional to iweEo sin(Ol) which (in the time domain) is just the
z component of 15. Setting 6 = 7/2 so that the position of the
loop gap is on the equator of the sphere we have as ka - 0

I(n/2) = -AeqEo (a + iwe) sin(01 ) + O((ka)2) (65)

where the equivalent area of the sensor is

Aeq = 37a 2  (66)

or as a vector
2-+

eq = 31a ez (67)

so that we can write as ka -*÷ 0

I(w/2) = -(a + iwe) inc *=_ o eq + 0 ((ka)2) (68)

For convenience we define a short circuit current transfer
function as

T(8 1 ) I(Tr/2) [-A eqEo (a + iWe)] (69)

so that as ka + 0 we have T - sin(Ol) which is the ideal low-
frequency angular dependence of the sensor. Then we have
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2 n 2n+l 1 1 ((01))pl(0) (70)
T (0 1) n c-i) T (2) 1 n (o(a1) )n()(0n=l n(n+) (ka) 2 [kah n)(ka) I

Some special values for the Legendre functions are1 6

0 for n + m odd

pm (0) = n+m (71)

-(n m 1)!! for n + m even

giving

2 2 2n+l n' (2) i_1_____ _(72 1
T(E 1 ) = n(n+l) (n-)2Tkh2 Pn2(co ()) (72)

n=l ( n

where the second index above the summation sign is the increment
which is added to the value of n to obtain the next value of n
for the summation. Here only odd n result. For convenience
define

T (01, 0) -i)n 2 2n+l 1 P (Cos (e Pn. Tco -nl )'l 2 n1)
n 13 n(n+l) (ka) 2 [kahn(2 ) (ka)] n

S(73)

For 0 = 7r/2 and odd n this is

' 2 2n+l n!! i , pl

Tn( 1' '/2) 3 n(n+l) (n-l)'' (ka) 2 [kahn(2) (ka)] n (cos(0I))
(74)

For our present case of interest just call this Tn so that the

short circuit current transfer function can be written as

OD,2

T( 1 ) = n (75)
n=l

Note that as ka -÷ 0 we have T - T1 + sin(01 ).

16. Ref. 7, p. 153.
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The short circuit current transfer function is plotted in
figure 4 as a function of ka with a = 0. Note that we plot
T/sin(OI) for several values of 01. This is so that all the curves
tend to one for low frequency and we can observe at what frequency
(i.e. what ka) they start to spread from one another. For compar-
ison T1 from equation 74 is included. T1 will be used later in
calculating some of the sensor response functions. In figure 4
the magnitude and phase of T/sin(eI) are plotted. For convenience
the phase is plotted as arg(T) - ka which corresponds to multiply-
ing T by e-ika. This is the same type of display as used in ref-
erence 2. Note that the magnitude of T/sin(0I) peaks up slightly
at around ka = .7. Also, between ka = 1 and ka = 2 the response
functions for various values of e1 begin to spread apart; some ka
roughly between 1 and 2 can then be considered the upper frequency
for which the sensor maintains a response proportional to sin(01 )
which can be considered the ideal angular dependence of the sensor.
This range of ka is also where the frequency response (for the
short circuit current) starts to fall off for higher frequencies.

Tl/sin(81 ) is a useful function to use for some of the later
response function calculations because it is the first term in the
expansion of T/sin(eI) and because it has no dependence on el.
The Hankel function for n = 1 is just

h()(ka) = 1! + ile- ika (76)1 ka (ka) 2 e

Then T1 is just

T1 -i eika
__ _ __ _ _(2)__ _ __ _ (77)

sin(e 1 ) (ka) 2 [kah 2 ) (ka)] 1 + ika - (ka )2

and we also have

T-ika 2-
Tn 1  = [1 + ika - (ka) 2 

(78)sin(O 1)

Tl/sin(8l) has a peak magnitude of 2//3 = 1.155 occurring at
ka = /Y7 = .707.
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V. Admittances

Now consider the admittances when the sensor is driven at the
gap. As illustrated in figure 5 the loop gap is centered on
0 = n/2 and has an angular width of 24o. There is a voltage Vgap
uniformly distributed around the gap. Associated with Vqap-there
are three surface current densities which are parallel to' ee.
These are Jsext, Jsint, and Jsc and are associated respectively
with fields external to the sphere, fields internal to the sphere,
and currents into the cables or other transmission lines loading
the gap. Taking the conventions for the directions of these cur-
rents as indicated in figure 5 we have three admittances to define,
namely

J JJYS int S int Jcr

Yint 2 Va t ' extE 2'a V ' c V 2ia

gap gap gap

In normalized form we also define

Yint =Zint ' Yext = ZYext ' EZYc (80)

For the numerical calculations we take a = 0, as before. Also de-
fine a normalized cable conductance as

Z
r Z c (81)c Yc Z

where Zc is the net cable impedance (resistive) loading the gap.
Since we have a = 0 for the numerical calculations then rc > 0 for
such calculations and rc is a constant which we can specify para-
metrically.

A. Boundary Conditions at Gap in Sphere

Here we use approximately the same quasi static approxi-
mation for the electric field distribution in the gap as was used
in references 1 and 2. Defining

6 e(82)2

we have
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EO ~~ ga ('pa (83)

with

1 2 -1/2
[il - C21 for W• < 1

O = (84)

t for 1
This field distribution has the proper form of singularity at

the edges of the gap, considering the assumption of a perfectly
conducting spherical shell of zero thickness. The presence of
cable connections across the gap will of course distort this field
somewhat near the connections. However, of the various choices
for the gap field one might choose the above choice seems to be a
reasonable one. Note that we assume 0o << 1 for these calculations.
Later we change to another field distribution fE which closely ap-
proximates fA for small '. This other distribution will be more
convenient for the evaluation of a certain integral.

B. Internal Admittance

To calculate the internal admittance we expand the fields
inside the sphere in terms of the spherical vector wave functions.
The boundary conditions at r = a are taken as independent of ' so
that m = 0 for the wave functions. There are three non zero field
components: Er, E6, H'. The fields are finite at r = 6 so that
the spherical Bessel functions of the first kind are used. The
fields are then expanded as

E El EYa N (n, 0, e)int n
n=o

(85)

H.int =Z inM M (n, 0, e)
n=o

where E1 is some constant with dimensions volts/meter. The non
zero components of the spherical vector wave functions for m = 0
from equations 12 and 15 are
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dP 0(cos(e)) (,M (n,O,e) = -f () (kr) -f (£) (kr)P (cos ())n dO n n

f (P) (kr)
Nr (n,O,e) = n(n + 1) n r 0°(cos()) (86)r kr n

[krfn(£)(kr)]' dPn0 (COS()) [krf(£) (kr)]'
N M) (n,O,e) = kr n- n P1 (cos(e))
0 kr dO kr

The boundary conditions for EG on r = a are given by equa-
tions 83 and 84. Writing out Ee on r = a gives

EI a [kaJ n(ka)]' p(cos(e)) (87)E8 = 1E an ka n
er=. =En=o

Multiplying both sides by Pnl(cos(O)) sin(e), integrating over 0
from 0 to w, and using the orthogonality of the Legendre functions
gives 1 7

_ 1 [kajn (ka)]' 2n(n + 1)a - (cos(e))sin(8)d=aPo E\4o/ n in ka 2n + 1

For the integral we define a convenient term

A' 1 Ir'q f p1(cos(G)) sin(6)dO
nf n0 0 0O 0

_ r/21=- f+ P (sin(f)) cos(*)d*
To --7r/2 0

1 *0 2 ] -1/2 1 2 1/2

-- J n - ,J pl (sin(f)) 1 sin2(,) (89)

17. Ref. 6, eqn. 8.14.13.
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Since we assume *o << 1, then for <iI <o o we can use sin(f)-
to write

1-1/

At f(L' 2 ]1/ 2 11/2 1(fd EA90nAn' ---•o •1- [1 - •2I n1 (C)d$ - An (90)

0

Then let * = 4/'o to give

i fI -1/2 22]i1/2pi

An = f[I - •2] [i - 22  Pl(Co)d (91)
-1

Since the form of fE is only approximate we take An instead of An
to calculate the coefficients. This integral is treated in ap-
pendix A. Using the approximation good for small po we then have
for our coefficients

V

a = gap 2n + 1 ka A (92)aE1  2n (n + I) [kajn (ka)] n

In obtaining the result of equation 91 for An the approxima-
tion sin(l) = i was used for small p. This is equivalent to alter-
ing slightly the field distribution fE to one which we call rE-
To see this let *o• = sin(i) in equation 91 giving

farcsin(p°) -12-/2

A 1 f arcsin(OP)[1 _ (sin(*) cos(f)P1 (sin(fl))cos(P)ld*An lrO 0 -arcsin(0 ()1 Vo n

-1 7i/2 flP(sin()fl cos(l)dp (93)%4rj_/2 fE nco

where we have defined

i i- ( ofl)2 cos(f) for 1'1 <arcsin(ýo

fE =- (94)

0 for 1I1 > arcsin(io)
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The voltage across the gap is given from equation 83 (except using
fE) by the integral

V ir/2

VO = f Ead/ (95), -T/2

Substituting from equation 94 and letting *o• = sin(*) we have

= i ga-121/2
Vo= I- [1 d = V (96)

Thus this field distribution is still exactly consistent with Vgap
as the gap voltage. The angular gap half width is arcsin(*o) for
this distribution and is very nearly *o for small p. We thus take
fE as the field distribution across the gap instead of the simpler
form given by fi.

The surface current density associated with the internal ad-
mittance is taken at e = 7r/2 for convenience so that we have

J -Hit (97)
Jsint r=a

6=7T/2

From equations 85 we then have

s =El " (ka)P1 (0) (98)Jsit n=oZ_ e~

From equation 71 we then have

n+l
=I -i(_2-- nn! (ka) (99)Jsint -Z n-i(l) (n - i)7. n n

Note that only odd n contribute to this sum.

From equations 79 and 80 the normalized internal admittance
is then
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21raZ 2raE1  ,2ip1(0) ajn (ka) (100)

Yint = gap sint Vgap n=n (

Substituting for an gives

S 2 2n + 1 1kaj n(ka)
=ni1 p1 (0)An (101)

nt n(n + I) n i1 [kaj (ka)]'

From appendix A, equation A21, we have

A p (O) n+l n 02)(12
=pl(o)F(-~Tk i; 1; (102)

n n (--2-' V2; *

where F is a hypergeometric function given by

n+1 n+l)g2

F _n1n1; *2) :2 (-2 q2) (103)
q=o (q!' )

and where (c)q is a Pochhammer symbol1 8 defined by

(• =1

(104)

(a) a(-(+l)(a+2) ... (c+q-l) for q = 1, 2,q

Note that the series in equation 103 has only a finite number of
terms giving a polynomial function of *o. This is convenient for
the numerical calculations. The normalized internal admittance
can then be written as

CO,2 2n+l1) (0)]F n+l n 1; 2) kaj n(ka)
Yint = iE n (n+l) (0 P_ n0 -- ' ;i o [kaJn(ka)]'

n=ln

= ,o2 2n+l [n'.' 2F n+l n 2) kaJ n(ka) (15
= i n(n+l) _nl)''] - 2 ; 1; o [kaj (ka)]' (105)

n=l

18. Ref. 6, eqn. 6.1.22.
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The asymptotic properties of this series for large n are treated
in appendix B.

The normalized internal admittance is plotted in figure 6 as
a function of ka with a = 0 for several values of qo. Note that
Yint has only an imaginary part. For convenience Yint/ka is
plotted in figure 6; Yint/ka is an imaginary function for real ka
which we are using. As ka - 0 Yint/ka tends to a constant; the
numerically determined coefficients are listed in table 1.

Yint

.001 14.22
.01 9.62
.1 5.10

Table 1. Asymptotic form of Yint for small ka

As one would expect for small ka this admittance represents a
capacitance. As ka is increased Yint has singularities correspond-
ing to the zeros of [kajn(ka)]'. The first two singularities oc-
cur at ka = 2.744 and ka = 4.973.

C. External Admittance

The calculation of the external admittance follows the
same development as the internal admittance. The fields outside
the sphere are expanded as outward propagating waves in the forms

Go

next = El a ng(4) (n,0,e)

n=o

(106)
C1

H ext Z n (n,0,e)
n=o

The only difference on the boundary r = a between these •ields and
those of equations 85 is the replacement of jn(ka) by hd (ka).
Analogous to equation 92 we then have the expansion coefficients
given by

n Vgap 2n + 1 ka A (107)

n aE1  2n(n + 1) [kah2) n

where only odd n are of interest.
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The surface current density associated with the external ad-
mittance is taken at 6 = r/2 giving

J =HJsext = ext0 r=a

0=7r/2

E 1 O, 2 (2 )
Z Ei$nh(h n (ka)Pl(0) (108)

n=1

From equations 79 and 80 the normalized external admittance is then

2iraZ 2j -(aEi 00,(2 h1 (2)
Yext -V= S V Ennn (ka)

gap ext gap n=l

2+,2 kah(2) (ka)
= (-i)i n2n + 1 1,
n=l n ~n + kahn(2) (ka)(

Or, substituting for An we have

n, 2 2 +kah(2) (ka)
,22n+1 In p n+(l n 2 n

Yext= (-)71 n(n+l) I(0) - 2 o 0kah(2) (ka)]n=l n

00,2 2n+1 r n'' 2 . n+l 2 kahn(2) (ka)
-r n(n+l) [(n'-l)' -•--_' (;2)n=l [kahn) (ka)]I

(110)

This series is very similar to the one in equation 105 and its
asymptotic properties for large n are treated in appendix B.

The normalized external admittance is plotted in figure 7 as
a function of ka with a = 0 for several values of ýo. In this
figure the real and imaginary parts of Yext are plotted, again in
the form Yext/ka which tends to a constant for small ka; the nu-
merically determined coefficients are listed in table 2.
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Yext

.001 17.36
.01 12.75
.1 8.04

Table 2. Asymptotic form of Yext for small ka

Yext is also a capacitance for small ka. Note that as ka is in-
creased Yext does not have singularities as was the case with Yint.
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VI. Frequency Response Characteristics

Now that we have the short circuit current and the admittances
in suitably normalized forms we combine these results to calculate
the frequency response characteristics. First define a response
function including only the admittances as

R = Yc [1 +
y - Yint + Yext + yc c (Yint + Yext)]

This is plotted as a function of ka in figures 8 and 9 for two
values of ýo (.01 and .1) with a = 0. For each graph several val-
ues of rc are used. Note for rc > 0 that Ry has zeros at the sin-
gularities of Yint. As one would expect decreasing rc maintains
Ry as a flat response characteristic out to larger values of ka
which represents higher frequency response.

Including the short circuit current transfer function from
equation 75 we have the response function

T(e 1 ) T(Ol) -1
R(e 1 ) E sin(el) Ry sin( 1El) + rc(Yint + Yext)] (112)

Another convenient, but somewhat artificial response function is
given by

R T 1  R T1  [1 + r (113)

1 - sin((l) Ry sin( 1 ) c (Yint + Yext)]

This last response function uses only the first term in the expan-
sion for T(e 1 ) and is independent of e1 .

In figures 10 and 11 we have Rl plotted as a function of ka
for two values of *o (.01 and .1) and several values of rc. Note
that the factor Tl/sin(0l) peaks up the frequency response in the
vicinity of ka = 1, partially compensating for the rolloff with
frequency associated with Ry.

Based on Rl we define an upper frequency response as the min-
imum value of ka for which

1R1 1 (114)
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This value of ka is plotted as a function of rc in figure 12 for
two values of o0 . Frequency response is increased by increasing
Po and by decreasing rc. It may not be desirable to decrease rc

too far because as rc ÷- 0 no power is delivered to the output.

In figures 13 and 14 we have plotted R as a function of ka
with a = 0 for various values of e1 with *o = .1 for two specific
values of rc. These two values are rc = .1327 and rc = .2654
which correspond to Zc = 50 Q and Zc = 100 0 respectively if the
media inside and outside the sphere are assumed to have the same
constitutive parameters as free space so that the wave impedance
is

Z = 376.7 Q (115)

Using Rl as an average of R to remove the dependence on 81, the
frequency responses for these two cases as defined by equation 114
are given by ka = .60 and ka = .30 for Zc = 50 0 and Zc = 100 Q
respectively.
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VII. Summary

In this note we have developed frequency and angular response
curves for the hollow spherical dipole with a uniformly resistively
loaded equatorial slot. For these calculations the media inside
and outside the sphere were assumed to have the same permittivity
and permeability and zero conductivity. For low frequencies the
response of this kind of sensor is proportional to one component
of the displacement current density (which is also called the time
rate of change of the displacement vector).

As an extension of the present calculations one might consider
the case that the external medium was a linear conducting medium.
In this case if the resistance due to the signal cable loading (Zc)
were small compared to the resistance loading due to the conduct-
ing medium, then for low frequencies this sensor would have a re-
sponse proportional to the total current density (conduction plus
displacement) in the external medium.

Perhaps the design considered in this note can be extended to
the case of several slots around the sphere at different values of
e. This would be a multi-gap spherical dipole analogous to the
multi-gap cylindrical loop. Another extension of the present cal-
culations would be to loops with spherical geometries. Perhaps
some of these and related topics can be considered in future notes.
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Appendix A: Calculation of An

In equation 91 we have a function which is expressed as an
integral given by

An = t1 - C -1/2 _ (Al)
-i

This function appears in the coefficients of the field expansions
used to calculate the internal and external admittances of the
sensor. The purpose of this appendix is to calculate this integral.

Define

1 2
1 f [l - 2] 1 -1 22p Pj(io0 )dý (A2)

-i

Rearrange this as

0

E1 [i •2X-1 p•/2
[1 -2 1 - 2 r2] p•(ýo•)dC

1

+ [- 2][ l - o21 P2 (-oC)dC

0

=f [i 2 X21 1 - •2oC2 ]p/2P(_•oý)dC

+ f[- [ 2 ] l - pc(*o)dC (A3)

0

giving
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f C2] [ x 2 2] 1/2 [P*C + 11d(A4)

0

Now we have a special case of a hypergeometric function
asiA, 2A

,2]21(21+ J-P]
2 .-2 

2 2( C) + p2

+ + 2 F(a, 1 2 )(A5)

for 0 < V2C2 < 1. Let

p 1-c-a- a v=t- - (A6)

giving

a - 1 l + 1 S+ P (A7)2 2

and

v]/22•+

F(,1 2 2\ 0V

=r(I. + a)r(l. + a) 2

1A. Ref. 6, eqn. 15.4.23.

2A. Ref. 9, p. 53.
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;4 . .. . .. . . • L • --- '-•, " -. • -'-- U. -... ... . - ----.. ... -

1/ 2 /( P+V 1-ji+v 1 2 2) (A8)

2 2 E22 ' 0 /

This then gives

= 7r 1/2 2 +i fl11- X-1I ~ -~...ý )d
= ~~[i-•2] F~(- + 1--i+vi 2 1d

(A9)

The hypergeometric function is given by

F(c, 0; y; z) = F(a, a; y; z) q I zq (AlO)
q=o q

where the Pochhamnmer symbol 3 A is defined by

Wo

(All)

(W) =x(a + 1)(a + 2).. (x + q-)q

and provided a is not a negative integer or zero

(a) _r( + q) (A12)q r ( a ) ,

Then we have the integral

(- 2 [i-X2 1 F(- P+, 1-~ ; 1; ý22)-2 f[2 2 o

0

2 q~4 ~) (1-1aT) ~,q ýo 1[_2 -Cqd (A13)

q=o (I)q 0
q

3A. Ref. 6, eqn. 6.1.22.
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This leaves us with the integral (in which we let ý = •2) as

0

1 
q-i1 A1i 2-

f [l -dE

0

P 1 r(x)r q +
B (X B~, q + 1- 2 (2 ) (A14)

where B is the well known beta function and we need Re[X] > 0.

Recombining these terms gives

-2 2(X + Z q qo1q q

- -1/ 2 -x) F( "+v 1_1+2 x + 2) (A15)2r~x + 21_ )-- 2--;
2'2

and then

= - 2U'(X) F(- 1+V, i-]J+V + 1+

-l r(x + 1r-, -P .r~ - .+ )2' 22
(A16)

This result for 7l is very similar to a formula in a standard
reference. 4 A However, in the course of our present investigations
we found this formula to be in error, most likely through a mis-
print. This led us to do the above derivation to find the correct
formula. We would like to thank Prof. Fritz Oberhettinger of
Oregon State University for our discussions with him on this
problem.
4A. A. Erdelyi, ed., Tables of Integral Transforms, Vol. 2,

McGraw Hill, 1954, p. 318, eqn. 31.
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T.n equations A2 and A16 let

2 1, v n (A17)

Then we have

A=1 _

n 7 n

2 2 1•- n; i; 2 (A18)

Since (n+l)/2 is a positive integer we have

r(In2) = , _- (n-1)'

(A19)

n+l

22

=n + (-i)!
r 2 1) 12.. - n+1 '.

22 2

This gives

n+l

A = (-l T -l F(- , n 1; 2 (A20)

Using equation 71 this can be written

1(_ n+1 n 2
A = P(O)F -- , n 1; * 2 (A21)

n n 2 2

Writing out the series we have
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n+•(_n+1)q(n)
A P1 (0) 2 _a,2q (A22)An n (q!,)20

q=o

Note that since (n+l)/2 is a positive integer the series in equa-
tion A22 has only a finite number of terms, making An a polynomial
in ýo.
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Appendix B: Properties of Admittance Series for Large n

The most difficult parts of the sensor response functions to
calculate are the internal and external admittances because of the
slow convergence of the series. In this appendix we consider the
behavior of these series for large n.

From equation 105 the normalized internal admittance is

CO,2 2n+l 1 22F( n+1 n 2) kaj n(ka)( = EiT (0 , 1; 1 [kajn(ka)]' (El)Yint = ~ nnl O~F-W,~1
n=1l

and from equation 110 the normalized external admittance is

kah(2) (ka)

Yt , 2 ni) 2+1 [(0)]2 ( n+l n 2 kahn( (ka)n

where from equation 71 we have

n+l
P l(0) = (-) for n odd (B3)

n (n-l)! frn

Define the individual terms in the summation for Yint as Yintn
and in the summation for Yext as Yextn so that equations B1 and B2
can be rewritten as

00,2

int = E Yint (B4)
n=l n

and

Yext = E Yextn (BS)
n=1

Define

nI n 2 - 2 > 0 (B6)

where nI and n 2 are odd integers. Then write the normalized ad-
mittances as
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n1 ,2

Yinnt= + Aint
n=l

(B7)

nl,2

Yext = Z Yint + Aext
£i=1 n

Then Aint and Aext are the errors introduced by truncating the two
series with last terms given by n = nI. These error terms are
written as

C, 2
Aint = Yint

n=n 2  n

(B8)

A ext = Yext
n=n 2  n

In this appendix we consider the individual terms in the sums and
the error terms for large n.

Consider the parts of the individual terms in the admittance
sums. Define an integer as

=n + 1 (B9)

where only odd n > 0 are of interest. For the hypergeometric func-
tion we have

nn *0)Fn -F( 'i z 1; 2) F\ N, N- 1;

+1•! n+lh (n

(q! (q,)2

q=o
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N (-N) N- )
*g2q (BIO)

(q2 )2 0
q=o

Now this particular hypergeometric function can be written as a
Jacobi polynomial usinglB

F(-N, a+l+a+N; a+l; x) N! P=i~)(1 - 2x) (Bil)
N

which gives

F PN( 2) (1 - 2* 2) (B12)

The Jacobi polynomials can be written as 2 B

(',a) -N N N N (x - 1)N-q(x + 1)q (B13)
S(x)=2 q N-q

where binomial coefficients are given by

N: : r(N + a + l) = (N + a - q + 1)q
q q'.(N + a - q + 1) q!

(B14)

(N+:' _ F(N + a + 1) _ (q + 8 + 1)N-[
kN-q) (N - q) 'Fr(q + 8+ 1) (N -q)!

The hypergeometric function of interest can then also be written

N FN

n q_ q N2tP0)

lB. Ref. 6, eqn. 15.4.6.

2B. Ref. 9, p. 211.
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N N (N (N )-q)
* -~( -l 2)P ( -2 (15)

q=o q) N-q

Note that the Jacobi polynomial in equation B13 is a polynomial
function of both a and a as well as its argument; the same is true
of the hypergeometric function in equation BIl. The range of a
and 8 are often restricted to a > -1 and 8 > -1 in order to make
the weight functions integrable. 3 B However we are not concerned
here with the orthogonality properties of the Jacobi polynomials.
Since the Jacobi polynomials are polynomial functions of a and a,
as is the hypergeometric function, then both series are identical
for all a and 0. Thus S = -(3/2) is allowed for the series repre-
sented in equation B15.

With the hypergeometric function represented as a Jacobi poly-
nomial we look at the asymptotic form for large N (implying large
n) of the Jacobi polynomials. As N ÷ for 0 < • < Tr we have 4 B

cos[(N + !(a+0+l)) - '(l+2a) )Ne,) (COS(M) -a+ 10 (N2 (B16)

(rN) i/2 [sin(•-]

Set

2
cos(O) 1 - 202 (B17)

giving

sl - cos( )1 / 2

sin = 2 =

(B18)

os =1 cos() = - •2

3B. A. Erdelyi, ed., Higher Transcendental Functions, Vol. 2,
McGraw Hill, 1953, p. 168.

4B. Ref. 9, p. 216.
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Applying this to equation B12 for 0 < *o < 1 gives as n -

Fn [1No] 1 / 2 cos N - arccos(2*2) _ Tr] + O(n ) (B19)

Thus as n c o the envelope of Fn falls off proportional to n-(1/2)
Also note as *o + 0 we have

arccos(1 - 2i2) = 2* + 0(*3) (B20)

As a check Fn was calculated from equation B10 and the asymptotic
form in equation B19 was observed to approach the calculated val-
ues for large n and for values of 4o used for the graphs.

Now turn to the Legendre function. As v + • for fixed p and
0 < c < n we have 5 B

P(v+i+I)( sin(r ) Cos 5 [(v + 12) + +4O-i
P~(osr) V + (21~ I ~ k 2J (

2 )(B21)

Thus as n - • and remembering that n is odd we have

pl(0) F(n + 2) 2) 1/ 2  [sn + 1) + 0(nn r n + 3 )'T)/ 2o1n+l) +OnI

n+1
-()T(2)I/ 2 r(n + 2) + 0(n-l) (B22)

Tr (n +3)

The gamma functions have an asymptotic form known as the Stirling
approximation 6 B which has as v ÷

5B. Ref. 6-, eqn. 8.10.7.

6B. Ref. 6, eqn. 6.1.37.

62



1A-2 1/2 -

r M = e V - (27) 1[ + 0(V- )] (B23)

Applying this to the gamma functions in equation B22 gives as

n+3
(n + 2) e - (n + 2) 2[ + O'n-l1

r(n 2 3 e-n-23-- + .3)n+l
+e~ e (n +I 10n )

1 (n+3 In(n+2)- (n+l) In (n+3)-
= e 2 e / e [+ 0(n- )]

= exp (n+l)nn) + 1 ln(n+2) - 1 [1 + O(n-))

= exp (n+l)[n L + 0(n 2)]7+ln(n+2) - [1 + O(n-)H

= expIln[(n+2) 1/21 + O(n- 1 )I [1 + 0(n-1 )]

= (n+2) 1/2 eO(n -1 [1 + O(n )]

n 1/2 -1 + O(n-1) (B24)

Thus for the Legendre function as n ÷ we have

n+1

(0) = (-l)22i n1/2[( + O(n- 1H

(B25)

P (0)] =2 n[l + 0(n )]
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Next are the Bessel functions. As n -~~we have

ka n Ika = 2ia nl ± + O(n -1) tI (n+l)(ka) n 1 + O(n -)l)]}

[kaj ~ k -1kT 177(nl

=ka 1+ n- Hnl

and

na~2  (k) -Ji(2n-1l)! [l + O(n )311(-n) i(2n-l) [1 + O(n)I
[kah (2) (ka)] (ka )ni (ka )n~l

nn

Now we can consider the terms in the stuns for the normalized
admittances. As n -~ we have

n7T n+l) 2 n~l + O(n- )] l[ + O(n ')]

- ~4k + 1212 1/

4 1co( +1 co[N )arccosl -* 2)~ Tr + O (n)}

TrNý 064



A 2] o1/12 [2 /2 C 2 +0

(B28)

This last result is also the asymptotic form for Yext for large
n. Thus the individual terms in the sums fall off liMe n-3/2 for
large n.

Equation B8 gives the truncation error in stopping the ad-
mittance sums at n = nl. Define an upper bound for these errors
by

A1 > max(IAintl, IAextI) (B29)

Using the asymptotic form developed in equation B28 we can give an
approximate value for A1 by setting the cosine to one and summing
the magnitude of the dominant term giving

21/2r 1/2 o,2 3
Al 4ka[ . - >1 F n- (B30)

n=n 2

Replacing the sum by an integral we have

3
A1 4kal -_2]/2[2]l/2 1 ]V 2 dv

- 4ka 0o f

4ka (B31)

which for small *o is

[T1 2 4ka[ n2] (B32)

Actually this is a rather large overestimate of the truncation er-
ror since the cosine function alternates in sign and it was re-
placed by one.
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Appendix C: Numerical Techniques for Computer Calculations
Joe P. Martinez, Dikewood

The numerical results plotted in figures 4 and 6 through 14
were calculated using the Control Data Corporation 6600 Computer
in the Air Force Weapons Laboratory at Kirtland AFB.

The calculations for the short-circuit current transfer func-
tion and the admittances included the use of the spherical Bessel
functions. These functions were computed by using both forward
and backward recurrence techniques. During the initial attempts
at producing the Bessel functions of the first kind, the jn(ka),
machine round-off error was encountered with the use of the for-
ward recurrence relationship as well as by series representation.
Backward recurrence was found to be one solution in overcoming
this problem. In using this technique, where N is the largest
order desired, the (N + 6)th function is set equal to zero, the
(N + 5)th function is set equal to 10-50, and the recurrence rela-
tionship,

2n + 1
=n-l (ka) ka Jn(ka) -j n+l(ka) (Cl)

is then used to determine the functions to n = 1. A ratio of the
exact value to the calculated value at n = 1 is taken and all the
calculated values to n = N are multiplied by this ratio. The
Bessel functions of the second kind, Yn(ka), are calculated by
finding the first two orders and then applying the recurrence re-
lationship

Ynl~a)_ 2n+l1
kaln(ka) = 2+ y (ka) - yn l(ka) (C2)

By comparing the values produced by these methods against
tables found in handbooks, it was determined that accuracy to eight
significant figures was obtained over the range of n and ka used in
the computations for this note.

Legendre functions of order 1 are used in the calculations of
equation 72. These were calculated by computing the functions of
degree 1 and 2 and then applying the recurrence formula

P (X) = (2 + !) x P 1 (x) - 1 + :) Pn1 (x) (C3)

where x = cos(e 1 ). Results obtained by this method were compared
with handbook tables and with calculations done by series repre-
sentations and backward recurrence. These values were found to be
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accurate to eight significant figures for the range of n used in
the computations.

While performing the calculations for the short-circuit cur-
rent transfer function (equation 72) it was determined that the
series was a rapidly converging one and that it met the ratio test
for convergence. This meant that an upper bound on the absolute
error could be expressed aslC

a aN (C4)

where aN is the last term included in the summation. As explained
in Section IV, only the odd-numbered n are included in the summa-
tion. The relative error will then be

E = 12: <E (C5)

In the calculations, E was set at .001. The number of terms nec-
essary to satisfy this criterion varied with ka, the larger values
requiring more terms. Generally the error criterion was satisfied
in fewer than 100 orders (50 terms).

The calculation of the Yint and Yext sums (equations 105 and
110) were handled in a different manner than that of the T sum due
to their slow convergence. The behavior of the expressions involv-
ing the spherical Bessel functions and the hypergeometric function
were studied separately to determine how the numerical calculations
could be made.

It was shown in appendix B that, as n ÷

kaj n(ka) ka (C6)

[kajn (ka)]' n + 1

and

kah (2) (ka)n ka (C7)

[kah( 2 ) (ka)] n

1C. W. Kaplan, Advanced Calculus, Addison-Wesley, 1952, pp. 328,

329.
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Numerical calculations were made in order to determine at what
point the asymptotic forms of these expressions could be used with
minimum loss of accuracy. It was desirable to switch to the as-
ymptotic form at some point to avoid round-off numerical errors
due to --he extremely small magnitude of the in(ka) at large n. It
was found that at n - 101kal + 30 the asymptotic forms may be used,
with a relative error of .03% at ka = 1.0 introduced in the terms.
Of course, as n gets larger this error will diminish with each
term.

In performing the numerical calculations for the hypergeo-
metric function of equations 105 and 110 it was found that numer-
ical round-off error was introduced after the sum of equation 103
was carried to a large number of terms, ti~e number depending on
Po- Going to double precision on the computer greatly improved

the situation, as now the number of usable values was doubled.
But, the round-off errors were still introduced before the Yint
and Yext sums could be completed. As was mentioned in appendix B,
the asymptotic form (equation B19) approaches Fn for large n. So
it was decided to switch to this form just before the numerical
errors started to be significant. Table Cl is a summary of the
pertinent values which occur immediately before the switch-over
points.

Relative
n+l F (n+lnl, 2' Asymptotic Absolute Difference
2 \-_- ;i Y o) Formula Difference (Percent)

.001 24999 .055569 .055816 .000246 .443453

.01 3199 .093564 .093394 .000170 .182042

.1 319 .095720 .096555 .000835 .872126

Table Cl. Values of the hypergeometric function
one term before the switch-over point

Now that methods have been established to calculate the terms
involving the Bessel functions and the hypergeometric function,
the calculation of the Yint and Yext sums may proceed. At some nl
a switch to the asymptotic forms of equations C6 and C7 takes
place, so that equation 105 becomes

y [n1,2 2n+l n!! 2  n+l n 1 kajn (ka)2itnn+l) n F 0n1 T n)_

Yint i nLn+l) [(n-l) ]F\ 2 ; o)[kajn(ka)],

+ ka E --2 [(n+l)IF--, r; 1; (C8)
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Similarly, equation 110 becomes

_xnt2 2 nUh (F2 )) (ka)
2n+l n!!n2 n 1 2) 2 •]etn=l n~nl 6(-1) 2 ; ;9 kah (2) (ka)

,2 nn

+ ka n~+2n+l [(n-2)! ' ~ lI n 1 )(9
n=E n+l tN-1)! 2T 0;i (9

Since the switch-over occurs when n > 101kal + 30, and the largest
value of ka used in these calculations was 10.0, all changeovers
to the asymptotic forms will take place by n > 131. It was found
to be convenient to calculate the sums, with Drka factored out,
from n = 201 to - (n odd) first, and then include these values in
the calculations later. Since ka can be factored out from the
last part of the summation, these values may be used with any ka.
The next problem was that of determining how far n should be car-
ried. This was done numerically by running the sums out progres-
sively further to larger n and noting the relative change. The
sums for all ýo were carried to n = 100001 and it was noted that
they were still changing about 1 part in 1000, or .1%. It was
further noted that there were peaks and minimums occurring as the
sum progressed, forming a diminishing envelope converging at some
number. The last few maxima and minima were then taken and the
value to which they were converging was extrapolated to 5 signifi-
cant digits. Table C2 gives these values. The relative error in
the sum is then in the order of .05%. This error is, of course,
multiplied by frka when the sums are used in the admittance
calculations.

co,2 ,
(iTrka) -1 Mint (iiTka) -1 , Wext

n=201 n n=201 n
.001 1.0987 x 100 1.1013 x 100
.01 -8.6355 x 10-2 -8.6605 x 10-2
.1 -2.0147 x 10-3 -2.0234 x 10-3

Table C2. Values to which admittance sums converge
from n = 201, with irka factored out

Most of the other numerical calculations performed for the
graphs in this note are straight forward and no explanation is
required.
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